Strong to weak coupling transition in large *N* gauge theories

Rajamani Narayanan

Department of Physics Florida International University Miami, FL 33199

in collaboration with Herbert Neuberger at Rutgers University

Wilson loop operator

- Unitary operator for SU(N) gauge theories.
- A probe of the transition from strong coupling to weak coupling.
- Large (area) Wilson loops are non-perturbative and correspond to strong coupling.
- Small (area) Wilson loops are perturbative and correspond to weak coupling.

't Hooft model – Durhuus-Olesen transition

The distribution of the eigenvalues of the Wilson loop operator is a gauge invariant observable:

$$p(heta; t); \quad heta \in [-\pi, \pi];$$

t is the dimensional area of the loop.

- In the large N limit:
 - Support is restricted to $|\theta| \le \theta_0(t) < \pi$ for t < 4.
 - Support extends over the full unit circle for t > 4.
- Transition at t = 4 but traces of arbitrary powers of the Wilson loop operator are smooth functions of t.
- Behavior in the double scaling limit, t → 4 and θ → π, described by universal scaling functions.

Large N QCD in three and four dimensions

- Wilson loop operator undergoes a transition like in two dimensions as the area is changed.
- The behavior in the double scaling limit is in the same universality class as the two dimensional model.

Large N universality hypothesis

Let C be a closed non-intersecting loop: $x_{\mu}(s), s \in [0, 1]$. Let C(m) be a whole family of loops obtained by dilation: $x_{\mu}(s, m) = \frac{1}{m}x_{\mu}(s)$,with m > 0. Let W(m, C(*)) = W(C(m)) be the family of operators associated with the family of loops denoted by C(*) where mlabels one member in the family.

Large N universality hypothesis - Continued

Define

$$\mathsf{O}_{\mathsf{N}}(\mathsf{y},\mathsf{m},\mathcal{C}(*)) = \langle \mathsf{det}(\mathbf{e}^{rac{\mathsf{y}}{2}} + \mathbf{e}^{-rac{\mathsf{y}}{2}} \mathsf{W}(\mathsf{m},\mathcal{C}(*)) \rangle$$

3

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Tests of the hypothesis

The hypothesis holds true in

- Large *N* gauge theory in four dimensions.
- ► Large *N* gauge theory in three dimensions.
- Large N SU(N) × SU(N) principal chiral model in two dimensions – Wilson loop operator is replaced by the operator associated with the two point function and one finds a critical separation and a double scaling limit around it.

But · · ·

One needs to use smeared operators to define physical operators (avoid perimeter divergence in wilson loops, for example).

A new observable – I

$$\det(z+W)$$

has a fermionic representation: $X_1, X_2...X_n$ are *n* arbitrary $N \times N$ matrices.

$$X = X_1 X_2 \dots X_n$$

$$\int \prod_{j=1}^{n} [d\bar{\psi}_j d\psi_j] e^{\sum_{j=1}^{n} [\bar{\psi}_j X_j \psi_{j+1} - \bar{\psi}_j \psi_j]} = \det(1+X)$$

A new observable – II

We can take a formal continuum limit of the fermionic path integral. The fermions interact with a one dimensional vector potential

$$\mathbf{a}(\sigma) = \mathbf{A}_{\mu}(\mathbf{x}(\sigma)) \frac{\partial \mathbf{x}_{\mu}(\sigma)}{\mathbf{d}\sigma}$$

where A_{μ} is the *d* dimensional vector potential and $x(\sigma)$ describes the one-dimensional closed loop. The spectrum of

$$\mathsf{D}_1(\mathcal{C})\equiv\partial_\sigma-\mathsf{ia}(\sigma)$$

- will have a gap for small loops,
- and will be gap-less for large loops.

A new observable – III

Two dimensional fermions coupled to four dimensional gauge fields

Let σ_1 and σ_2 define the coordinates on a two dimensional $l_1 \times l_2$ torus, Σ , embedded in four dimensions:

$$\begin{aligned} x_1(\sigma) &= \frac{l_1}{2\pi} \cos \frac{2\pi\sigma_1}{l_1}; & x_2(\sigma) &= \frac{l_1}{2\pi} \sin \frac{2\pi\sigma_1}{l_1}; \\ x_3(\sigma) &= \frac{l_2}{2\pi} \cos \frac{2\pi\sigma_2}{l_2}; & x_4(\sigma) &= \frac{l_2}{2\pi} \sin \frac{2\pi\sigma_2}{l_2} \end{aligned}$$

The induced metric is

$$d\sigma^2 = d\sigma_1^2 + d\sigma_2^2$$

ヘロン 人間 とくほど 人ほど 一日

A new observable – IV

We define a two component gauge potential a_{α} on the torus by

$$oldsymbol{a}_lpha = oldsymbol{A}_\mu(oldsymbol{x}(\sigma))rac{\partial oldsymbol{x}_\mu}{\partial \sigma_lpha}$$

The two dimensional massless Dirac operator is:

$$D_{2}(\Sigma) = \gamma_{\alpha}\partial_{\sigma_{\alpha}} - i\gamma_{\alpha}a_{\alpha}(\sigma)$$
$$\gamma_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \gamma_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

(日)

Ultraviolet divergences

- The two dimensional fermions are quenched in the large N limit.
- Nonabelian current:

$$J^{j}_{lpha}(\sigma) = ar{\psi}(\sigma) \gamma_{lpha} T^{j} \psi(\sigma)$$

Abelian current:

$$J_{lpha} = ar{\psi}(\sigma) \gamma_{lpha} \psi(\sigma)$$

Two counter terms that preserve chiral symmetry:

$$\mathcal{L}_1 = J^j_{\alpha} J^j_{\alpha}, \quad \mathcal{L}_2 = J_{\alpha} J_{\alpha}$$

 Counter-terms are dimensionless and we have only logarithmic divergences.

Chiral symmetry is broken for large torus but not for small torus

Left panel is a torus of size 2.7×2.7 and right panel is a torus of size 1.4×1.4 with lengths measured in units of inverse deconfinement temperature.

(日)

Chiral symmetry is broken for large torus but not for small torus

Left panel is a torus of size 2.7×2.7 and right panel is a torus of size 1.4×1.4 with lengths measured in units of inverse deconfinement temperature.

・ロト ・四ト ・ヨト ・ヨト

Hamiltonian version – Cylinder

Let σ_1 and σ_2 define the coordinates on a cylinder of dimensions $I_1 \times \infty$:

$$x_{1}(\sigma) = \frac{l_{1}}{2\pi} \cos \frac{2\pi\sigma_{1}}{l_{1}}; \qquad x_{2}(\sigma) = \frac{l_{1}}{2\pi} \sin \frac{2\pi\sigma_{1}}{l_{1}}; \\ x_{3}(\sigma) = 0; \qquad x_{4}(\sigma) = \sigma_{2}.$$

The gauge field in the σ_2 direction seen by the two dimensional fermions have an associated Polyakov loop that is unbroken in the confined phase.

Chiral symmetry is broken for large cylinder but not for small cylinder

Left panel is a torus of size 1.8×1.8 and right panel is a torus of size 0.9×0.9 with lengths measured in units of inverse deconfinement temperature.

(日)

Chiral symmetry is broken for large cylinder but not for small cylinder

Left panel is a torus of size 1.8×1.8 and right panel is a torus of size 0.9×0.9 with lengths measured in units of inverse deconfinement temperature.

イロト イ理ト イヨト イヨト

Infinite torus

- We can consider two dimensional fermions that live on the (x_1, x_2) plane at $x_3 = x_4 = 0$.
- This corresponds to an infinite torus and the two associated Polyakov loops will be unbroken in the confined phase.
- Chiral symmetry will be broken. What is the chiral condensate?
- What is the β function associated with the two dimensional fermions?

Chiral symmetry is broken for an infinite torus

< □ > < □ > < □ > < □ >

э